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Abstract. A lot of research has been devoted to understanding the technical
properties of amplification DDoS attacks and the emergence of the DDoS-as-a-
service economy, especially the so-called booters. Much less is known about the
consequences for victimization patterns. We profile victims via data from amplifi-
cation DDoS honeypots. We develop victimization rates and present explanatory
models capturing key determinants of these rates. Our analysis demonstrates that
the bulk of the attacks are directed at users in access networks, not at hosting, and
even less at enterprise networks. We find that victimization in broadband ISPs is
highly proportional to the number of ISP subscribers and that certain countries
have significantly higher or lower victim rates which are only partially explained
by institutional factors such as ICT development. We also find that victimization
rate in hosting networks is proportional to the number of hosted domains and
number of routed IP addresses and that content popularity has a minor impact on
victimization rates. Finally, we reflect on the implications of these findings for
the wider trend of commoditization in cybercrime.

1 Introduction
While Distributed Denial-of-Service (DDoS) attacks have been around for a long time,
the use of amplification techniques has transformed the criminal ecosystem. These tech-
niques now make up the bulk of the observed attack traffic [1, 2]. This shift is intimately
related to another trend: the rise of DDoS-as-a-service, also known as booters. Booters
are a clear example of the so-called commoditization of cybercrime [3]: criminal ser-
vice providers bundling all the resources and tools needed for an attack and offering
them in an accessible way as a commodity service to anyone willing to pay.

Several in-depth studies have illuminated the supply side of the market for DDoS:
the technical resources and techniques deployed by the criminal service providers [2,
4, 5]. We have also learned quite a bit about the economics of booters from publicly-
leaked dumps of several operational databases containing information about revenue
and customers [6–8].

What is much less understood, however, is how the abundance and affordability
of DDoS-as-a-service has impacted victimization patterns. Who is bearing the brunt
of the lowered barriers for DDoS attacks? Existing studies have revealed some basic
distributions of victims across countries, Regional Internet Registries (RIRs) and Au-
tonomous Systems (ASes). They have pointed to end hosts, gaming servers and hosting
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providers [1], but they lack a more in-depth investigation and explanation of victimiza-
tion patterns.

This paper addresses this knowledge gap and profiles the affected networks and
victims. It uses a dataset of 1,115,795 victim IP addresses captured over the past two
years (2014-2015) via several amplifier-honeypots [2]. From the IP addresses, we infer
certain properties of the victims and identify the factors determining their distributions
across networks and countries.

Since the existing work on amplifiers and booters has not focused on the victims,
the public understanding of them has been shaped by anecdotal news articles and by
industry reports compiled by DDoS mitigation providers. The former focus on the more
news-worthy cases, i.e., the attacks against high profile targets. The latter are biased
towards their own customer base, i.e., enterprises purchasing DDoS protection services,
as that is where the data is being collected. As we demonstrate in this paper, neither
provide a good understanding of the ecosystem of commoditized DDoS attacks.

We summarize the main contributions of this paper as follows:

– We show that the bulk of the victims (62%) are users in access networks, rather than
in hosting networks (26%). Only a small fraction resides in enterprise networks;

– We demonstrate that the victimization rate in access networks is highly propor-
tional to the number of broadband subscribers in those networks, suggesting that
the commoditization of attacks has led to a democratization of victims;

– We find that certain countries have a significantly higher number of victims per sub-
scriber. This rate is weakly related to institutional factors such as information and
communication technologies (ICT) development, suggesting geographical network
effects among attackers and victims increasing the uptake of DDoS-as-a-service;

– We demonstrate that victimization in hosting networks is proportional to the num-
ber of IP addresses and hosted domains, and also influenced by the popularity of
the hosted content.

– Where we were able to specifically identify webhosting victims, we find that they
have barely any enterprises among them or other valuable targets. The largest vic-
tim group are gaming-related sites, most notably around Minecraft, suggesting that
the commoditization of DDoS facilitates crime that is mostly not profit driven.

In what follows we first present some background (Section 2) and the data collec-
tion method (Section 3), we then discuss the distribution of victim IP addresses over
access, hosting and other networks (Section 4). Next we delve deeper into victimization
patterns in access networks (Section 5) and hosting networks (Section 6). We briefly
explore whether attack duration is different across victim populations (Section 7). After
comparing our findings to related work, we summarize our conclusions on the conse-
quences of DDoS-as-a-service and discuss the implications for the wider issue of the
commoditization of cybercrime.

2 Background
DDoS attacks have been associated with a range of motives. They can be profit-driven
– as in the case of extortion, disrupting competitors, or using it as a smoke screen for
committing financial fraud – or motivated by other objectives, such as political protest,
harassment, or gaining advantage in online gaming [1, 3].
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Amplification DDoS attacks now make up a considerable fraction of network-layer
DDoS incidents [9–11]. Attackers send requests to amplifiers – a.k.a. reflectors – and
spoof the source IP address, so that the amplifiers responses are directed to the victim.
A whole range of protocols can be abused for amplification and millions of machines
run these protocols which enables such attacks [12].

Most of the amplification attacks stem from booter services [2, 7]. The price for
purchasing an amplified DDoS attack can be as low as $1, as the analysis of some leaked
booter databases demonstrates [7, 13]. A purchase from a booter would typically entail
access to the service for a limited amount of time, tied to different pricing tiers. Most
attacks are very short, less than 10 minutes [7].

On the customer side of booter services, leaked databases have shown that most
customers of DDoS-as-a-service use it only once to attack a single target [7] and only
a small fraction of them hide their tracks via TOR or VPN. This might indicate that their
technical skills are limited or that they do not perceive a need to hide. The users that do
hide their tracks, tend to return for more and also tend to launch more attacks [6]. The
databases have also revealed that gamers make up a specific and important customer
group [6]. On the victim side, booter databases contain the targeted IP addresses or
URLs, but these sets are limited in scope and volume. The top 100 most attacked sites
were mostly game servers and game forums [6].

Besides booter databases, NTP amplification attacks allow victim IPs to be retrieved
from the NTP servers. From this data, Czyz et al. [1] point to end hosts and gaming
servers to be common victims [1]. Amplification honeypots have also collected victim
IP addresses [2]. They have only been superficially analyzed, in terms of the distribu-
tion over countries and IP address space. The U.S., China and France were the most
attacked countries. In this paper, we significantly extend the analysis of honeypot data.

The only other systematic source of information comes from industry reports by
DDoS mitigation providers. Akamai points to gaming, software and the financial indus-
try as the major victims [9], with a small fraction of victims belonging to the telecom
industry. Other reports suggest hosting as major victims [14]. These industry reports
have specific limitations and biases, which we will return to in Section 4.

3 Honeypot Data
The victim data used in this study was gathered via a set of amplifier honeypots –
dubbed AMPPOTs [2] – which have been deployed over the past two years (2014-
2015). They run services that are known to be misused for amplification attacks: QotD
(17/udp), CharGen (19/udp), DNS (53/udp), NTP (123/udp), SNMP (161/udp) and SSDP
(1900/udp). Each AMPPOT uses real server software (in ‘proxy’ mode) to provide the
aforementioned services except for SSDP in which an emulated script is used instead.
The responses of AMPPOTs are filtered in order to prevent from contributing to actual
attacks. More details of AMPPOT can be found in the previous study [2].

In total 8 AMPPOTs were deployed on the Internet during the measurement pe-
riod of 2014-2015. Table 1 shows a summary of the operational timeline and supported
protocols of these devices. At the start of the measurement period (2014-01-01), two
AMPPOTs were operational and initially only supported the CharGen and DNS protocols.
With a sustained effort to monitor more amplification attacks, more devices were gradu-
ally added with support for additional abused protocols. At the end of the measurement
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Table 1: Overview of deployed AMPPOTs.
AMPPOT ID Deployed on IP Changes Notes

H01 2012-10-07 19 added QOTD, NTP, SNMP, SSDP on 2014-09-25. Discontinued
on 2015-10-09

H02 2013-05-13 25 only DNS supported
H03 2014-05-13 9 added SNMP support on 2014-09-17 and SSDP on

2014-10-03 *
H04 2014-05-13 10 added SNMP, SSDP support on 2014-09-17 *
H05 2014-05-10 4 added SNMP, SSDP support on 2014-10-18 *
H06 2014-05-10 6 added SNMP, SSDP support on 2014-10-18 *
H07 2014-05-10 8 added SNMP, SSDP support on 2014-10-18 *
H08 2015-11-09 0 –– **
Note:* Deployed with QOTD, CharGen, DNS and NTP support
Note:** Deployed with support for all protocols

period (2015-12-31) the deployed AMPPOTs collectively monitored 6 services except
for H02 which only supports DNS. All AMPPOTs are located at ISPs in Japan and their
IP addresses are dynamically assigned. Depending on the ISP, the IP addresses changed
every 5-30 weeks, on average.

AMPPOTs observe not only amplification attacks, but also scans from researchers
or attackers who search for vulnerable devices. To separate actual attacks from scans,
attacks are defined as a series of at least 100 consecutive query packets that a single
host sent to an AMPPOT, where consecutive means that there was no gap of more than
600 seconds between two packets. This definition is in concord with the one used in [2].
We did, however, reduce the gap from 3600 seconds to 600 seconds, in order to analyze
attack duration with a more fine-grained approach.

Collectively, the AMPPOTs have monitored 1,115,795 unique victim IP addresses
from 92 countries and 15,044 unique victim ASes. Figure 1 shows the number of at-
tacks per protocol during 2014 and 2015. As the figure demonstrates, the total number
of attacks has increased over time and protocols like DNS, NTP and SSDP have been used
more often to launch amplification attacks. During the measurement period, the AMP-
POTs have monitored 5,726,150 amplification DDoS attacks in total: DNS (41.26%),
NTP (38.73%), CharGen (11.32%), SSDP (8.01%), SNMP (0.65%), and QotD (0.01%).
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Fig. 1: Number of amplification attacks per protocol

4 Victims of Amplification Attacks
Given our amplification attack data the first question we pursue is: In which type of
networks are victims concentrated?
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To avoid confusion, we first define the main concepts. The term attack has been
defined and operationalized in the previous section. We use the term target to refer
to the entity (or entities) that the attacker intended to affect. This may be a person,
organization, service or machine. Since the data consists of IP addresses, the attacker’s
intention is not directly observable. For this reason, we use the term victim to refer to
the targeted IP addresses and the hosts residing there. As DDoS attacks are also a cost
to the networks in which the victims reside, we refer to the Autonomous System (AS)
that routes the traffic for the victims as victim AS or victim network. To answer our
question we looked up the ASes of the victims and categorized them into three groups:
broadband ISPs, hosting providers, and other networks.

To reliably identify the broadband ISPs, we utilize a previously developed mapping
that identifies the ASes of broadband ISPs in 82 countries and that has been used to
study botnet mitigation in broadband ISPs [15]. The mapping accurately distinguishes
between and provides labels for ASNs which have been manually mapped to broadband
ISPs, hosting, governmental, mobile ISP, educational and other types of networks. In
total, the mapping contains 2,050 labeled Autonomous Systems. The mapping is orga-
nized around ground truth data in the form of a highly accurate commercial database;
TeleGeography Globalcomms [16], containing the broadband subscriber numbers of
211 countries. Compared to machine learning approaches that map AS types [17], our
mapping is more accurate since it manually identifies access networks, and the com-
pleteness of the mapping is verified with the Telegeography database.

To identify hosting providers, we take all the non-broadband ASes in our data and
apply a simple heuristic to them. First, we count the number of unique second-level
domains (2LDs) hosted within the ASes. For this we used all observed domains in 2014
and 2015 in DNSDB, a large passive DNS (pDNS) database generously provided to
us by Farsight Security [18]. DNSDB is sourced from more than 100 sensors located
around the world, in addition to authoritative DNS data from various top-level domain
(TLD) zone operators. To illustrate: in 2015 DNSDB observed 287M unique 2LDs,
which map to 69M distinct IP addresses.

We use the accurate AS labels mentioned above to identify a threshold for the num-
ber of hosted domains per AS that most accurately separates the ASes labeled as hosting
from other types of ASes which may also host domains. Our approach does mean that
CDNs and others networks like Cloudflare also get categorized as hosting. Based on
the ROC curve constructed we identify this threshold to be 2700 2LDS. Therefore we
define as hosting any AS that has not been previously identified as a broadband ISP
and that hosts more than 2,700 2LDs. This corresponds to a false-positive/true-positive
rate of 0.17/0.74. This accuracy is far from perfect, but better than available alterna-
tives. We compared it to machine learning approaches, such as CAIDA’s classification
of ASes [17]. Using CAIDA’s Content label as an alternative means for classifying
the hosting providers results in a 0.04/0.32 false-positive/true-positive rate of classi-
fication. This classification has a better false-positive rate, but this comes at the cost
of a highly reduced true-positive rate in comparison to our classification. Alternative
methods for identifying hosting providers have also been explored in [19]. They are not
directly comparable due to their organizational level classification rather than AS level.
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Finally, all ASes that have not been classified as broadband ISP or hosting are la-
beled as other. Our labels and manual inspection show that this group contains govern-
mental and educational networks, mobile and cloud providers, enterprises and more.
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Fig. 2: Distribution of Types, Attacks and Victim IPs

Having constructed our network classification, we can now examine the distribution
of victims over these networks. Figure 2 plots the results.

It clearly shows that the majority of attacks and victim IPs are located in broad-
band ISPs, even though they only constitute a small fraction of all ASes that have been
attacked. More precisely, 48% of the attacks and 62% of the victims are in access net-
works. In total, we observe victim IPs from 92 countries in the attack data. We have
detailed information on ISPs from 77 of these 92 countries. All identified ISPs in these
77 countries receive attacks, except for 5 countries (GB, US, JO, KE, LV) where at
most 2 smaller ISPs are missing from the attack data. This suggests that the whole
global broadband market is victimized by these attacks.

The second largest category is hosting: 41% of attacks and 26% of victims. The
remaining victim networks constitute only a small fraction of the attacks and victims
(11% and 12%, respectively).

This distribution of victims across broadband and hosting networks is different from
earlier work by Czyz et al. [1]. They observed that the top 10 most targeted networks
consisted of eight hosting providers and two telecom companies and that access nodes
made up around half of all victims. They did observe already a trend that the portion of
victims in access networks was increasing, which seems to have continued after their
measurement period. Our analysis of the UDP ports used for the attacks largely agrees
with that of [1]. The most frequently attacked UDP ports by a large margin include
ports 80 and 8080, that are more likely to be open and accessible through firewalls.
Other application specific ports are also targeted such as (7000) for BitTorrent trackers
and CORBA management agent (1050).

We have triangulated our results with CAIDA’s mapping of ASes [17], which clas-
sifies them as Content, Enterprise or Transit/Access. While these categories are
different from ours, which means we cannot directly compare the exact distributions,
the CAIDA mapping also locates most victims in Transit/Access networks, followed
by Content and Enterprise. This is consistent with our findings.

Networks are not homogeneous, of course. Broadband networks, for example, can
also contain hosting services. To probe deeper into the AS-level pattern, we take a closer
look at the IP addresses of victims in access and hosting networks. We checked whether
the addresses were associated with any domains in our pDNS data. Domains are used
for a variety of hosting services; websites, but also for gaming servers, email servers,
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basically for any service where a human readable name is more convenient than an IP
address. The pDNS data found that 95% of the victims in broadband networks have
never been associated with any domains in 2014 and 2015. This suggests that the bulk
of the victims in these networks are access nodes. The remaining 5% host on average
20.8 domains per IP address (The median domain count is 1 and 75% of these victims
host 3 or less domains).

Since this categorization is dependent on the coverage of our pDNS data, we have
cross-checked our domain data with the Bing.com search engine. We took a random
sample of 1000 broadband victim IP addresses and queried Bing (‘IP:<x.x.x.x >’) to
see if any domains were associated with it. For 9% of the cases, BING reports observing
domains where our pDNS data did not observe any. The opposite was true in 2% of the
cases. This suggests that the pDNS data gives a reasonably accurate picture.

In hosting networks, we found that 46.6% of the victim IPs have been associated
with domains. This confirms earlier work that webhosting is just one among many tar-
gets. Figure 3 summarizes the breakdown of the victim types and the subsets which we
analyze in more detail in subsequent sections.

Fig. 3: Breakdown victims

Our results substantially differ
from the victimization analysis
in the reports of DDoS miti-
gation providers. There are two
types of industry reports: based
on traffic data or based on cus-
tomer surveys. An example of
the former is Akamai’s State of
the Internet report [20]. It iden-
tifies the gaming industry as the
largest victim of DDoS attacks
with 54% of the attacks, fol-

lowed by the software and technology industry (23%) and financial industry (7%). Only
4% of attacks map to the Internet and Telecom industry. Another type of industry report
is based on surveys among customers of DDoS mitigation providers. A recent example
is Arbor Networks’ WISR [10], which surveys 287 different organizations of which
24% are ISPs and 5% hosting providers. Other industry reports [14] point to hosting as
the main victim however, this could be due to a focus on botnet-assisted DDoS attacks.

The mismatch between these reports and our findings is evident. We would argue
that when it comes to observing victimization, the industry analyses are more biased
than the honeypot data. Industry data is typically collected in the networks of the cus-
tomers of the DDoS mitigation providers. It is unlikely that users in retail broadband
networks are purchasing these kinds of services and thus those victims are severely
under-counted by the industry reports. The amplifier data is much less biased towards
certain types of victims. This strength does come at the cost of a weakness: missing
attacks that are not amplifier-based. Earlier work suggests this is not a significant issue.
Czyz et al. compared the data captured by observing NTP amplifiers against industry
measurements and victim network data and they found that the patterns observed in the
amplifier data were consistent with the industry measurements [1].

7



The contrast between our findings and industry reports are more than measurement
issues. They have significant theoretical implications for our understanding the DDoS
ecosystem, a point to which we will return later in the paper. We first turn to a more
in-depth look at the victimization patterns in broadband ISPs and hosting.

5 Victims in Broadband Providers

We have now established that the majority of victims reside in broadband providers and
that the majority of these victims are access nodes. In other words, home routers are
typically the most affected devices. It suggests that the actual target is a regular home
user behind that router. This brings us to the next question: How are victims distributed
over broadband networks?

A simple count of unique victim IP addresses over the whole measurement period,
does not give us a decent metric of victimization rates per ISP because of DHCP churn.
ISPs re-assign IP addresses to their users at varying rates, where high rates lead to
significant over-estimation of the number of victims. One method to reduce the effect
of churn is to use short measurement windows [15, 21]. For this reason, we count the
unique number of IP addresses seen for each day and then average those daily counts
to get to victimization rates over larger time frames. This results in a more accurate
representation of the relative victimization rate per ISP.

In Figure 4, we have plotted the average daily number of victims against the num-
ber of subscribers of those ISPs. The subscriber data is drawn from the TeleGeography
database discussed in the previous section [16]. The database provides accurate world-
wide subscriber numbers for ISPs from 77 countries that appear in our attack data.
It provides a more precise proxy for the number of users in a network than technical
network properties, like the number of advertised IP addresses, can provide.
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Fig. 4: Correlation access victims with ISP subscribers

As we can see, vic-
timization rates differ
by several orders of
magnitude across ISPs,
but these difference are
highly correlated with
the size of the cus-
tomer base: R2 = 0.60.
As an aside, the cor-
relation with the num-
ber of IP addresses ad-
vertised by each ISP
also shows a firm lin-
ear relation, though a
bit weaker (R2 = 0.56).

In other words, the number of users is a strong predictor for the number of observed
victims. This is consistent with the earlier speculation that it is individual users that
are being attacked, rather than services or devices. It also means that, to some extent,
victimization rates are uniform across ISPs. Whatever motivations attackers may have,
it seems they select targets somewhat evenly across broadband networks.
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Notwithstanding the effect of the size of the subscriber base, as captured by the
regression line, the figure also clearly shows that there is significant variation around
that line. That raises a new question: why do some ISPs have disproportionately more
or fewer victims? We can use the victim rates of ISPs (i.e., the daily average number
of victim IP addresses divided by the number of ISP subscribers) to further explain the
variance among them. From the size-corrected victim rates we can see that there are
several orders of magnitude differences among the most and least attacked ISPs. How
can these differences be explained?
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Fig. 5: Between and within country differences among ISPs

In Figure 4, we
have color coded ISPs
by the country in which
they operate. To bet-
ter highlight between
and within country re-
lations, Figure 5 plots
the distribution of ISP
victims per subscriber
in relation to the coun-
try in which they oper-
ate. Two things become
apparent. First, in many
countries, ISP victimization rates are remarkably clustered, compared to the overall
variance across countries. Second, ISPs in some countries are victimized less, according
to our metrics. In other words, there seem to be country-level effects at work, in addition
to network- and user-level effects. The plot shows that ISPs in New Zealand, Australia,
U.S., U.K. and France have disproportionately more victims, while ISPs within coun-
tries such as China, Japan and Indonesia have disproportionately fewer. It is important
to note that almost all ISPs in the 77 countries are present in the data, so there is no
selection bias at work in these patterns.

The differences between countries might be explained by institutional characteris-
tics of the countries in which the ISPs operate. Two institutional differences that we
tested for are: i) the development of the ICT infrastructure of each country and ii) the
overall economic status of the country. In both cases we expect to observe more victims
in more developed countries, as more online activity and better infrastructure might
drive more motives and opportunities for attacks – around online gaming, for exam-
ple. The ICT development index is a well established indicator ranging from 1 to 10
with higher values for more developed countries. The index is provided by the ITU (the
United Nations International Telecommunications Union) and constructed from a set of
internationally agreed-upon indicators. We also looked at the gross domestic product
at purchasing power parity (GDP PPP) per capita, to capture the economic status of
each country [22]. From the plots in Figures 6a and 6b, it is clear that both explanatory
variables do correlate with ISP victim rates, but only weakly.

To consider the joint effect of the three explanatory factors that we have examined so
far, i.e., the number of ISP subscribers, ICT and GDP PPP indexes, we construct several
statistical models using negative binomial, generalized linear model (GLM) regression.
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Fig. 6: Correlation of ISP victim rates with country level variables

The models predict the number of victims per ISP given a set of explanatory variables.
A summary of these statistical models are presented in Table 2.

Table 2: Negative binomial GLM regression models
with ‘Loge’ link function for number of ISP victims

Dependent variable:

# Victims per ISP
(1) (2) (3)

Subscribers 2.160∗∗∗ 1.996∗∗∗ 1.977∗∗∗
(log10) (0.079) (0.075) (0.074)

ICT Dev. Index 0.249∗∗∗
(2015) (0.034)

GDP PPP per Capita 0.030∗∗∗
(in $1000) (0.004)

Constant −5.880∗∗∗ −6.712∗∗∗ −5.705∗∗∗
(0.454) (0.468) (0.430)

Observations 304 300 291
Log Likelihood −2,255.880 −2,204.260 −2,128.202
θ 0.963∗∗∗ (0.070) 1.097∗∗∗ (0.082) 1.143∗∗∗ (0.087)
Akaike Inf. Crit. 4,515.761 4,414.520 4,262.404

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Model1 only includes the
attack surface size, Model2
adds the ICT development in-
dex as an additional factor and
finally Model3 adds the GDP
PPP per capita. As expected,
Model1 demonstrates the ef-
fect of the size of the sub-
scriber population – i.e., the
size of the ’attack surface’
– in correspondence with our
earlier results (Figure 4). The
other two models demonstrate
that in addition to size, the two
institutional country variables
considerably contribute to the
variation in the number of vic-
tims per ISP, however their ef-
fects are much smaller. We in-
terpret the results of Model2 as
an example. While holding everything else constant, increasing the number of sub-
scribers by one unit (equivalent to multiplying the number of subscribers by 10 due to
the log10 scale of the variable) multiplies the number of victims per ISP by e1.996 = 7.36.
Similarly, increasing the ICT development index by one unit (while other factors are
held constant) multiplies the number of victims by e0.249 = 1.28. Model3 can be inter-
preted in a similar fashion. Note that due to the correlation of ICT development and
GDP we do not include both variables in one model.

We have also examined other factors, such as ‘gaming popularity’ and ‘piracy’
which show weak correlations with victimization rates as well. Including these in sep-
arate GLM models shows a significant small effect of online gaming as captured by
the average number of games owned per country on the Steam online gaming platform.
This could be indicative of a possibly weak relation with online gaming and end-host
victimization. However, further examination of the variable indicates strong correla-
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tions with ICT development and GDP therefore bearing little added information which
the other factors did not already include in our models.

Given that the institutional factors have a weak effect, it begs the question of why,
in the majority of the countries, ISP victim rates are closely clustered together. More
specifically, the ISPs of only 12 of the 77 countries are dispersed by more than one
order of magnitude (among them are Brazil, India, and China). Even with quite similar
infrastructure and economic conditions, the differences among ISPs are larger between
the countries than within them. This pattern suggests that there are specific country-
level factors at work, beyond the general factors we examined.

We can only speculate why ISPs in a certain country are so clustered, but one ex-
planation is that attackers and victims are geographically concentrated and that their
interaction leads to network-effects. We know from the research on booters that many
of the customers are gamers [6]. Other studies have told us that many of the victims are
also related to gaming [1]. Combine this with findings from online social network anal-
ysis, inside and outside of gaming, which found that these online networks are shaped
by geographical vicinity. In other words, users in online networks tend to be friends or
familiar with each other in offline networks as well [23, 24]. In other words, they are
geographically close.

Jointly, these three factors might drive a geographically concentrated network ef-
fect: some of the victims become attackers themselves, which is easy because of the
booter services. These new attackers, in turn, victimize others, and the cycle continues.
This pattern fits with anecdotal evidence from news reports. In the Netherlands, for ex-
ample, DDoS-ing became such a widespread phenomenon among schoolkids [13], that
even those who did not play online games started to use booters, because everyone was
doing it. One more technically skilled youngster said he quit DDoS-ing, as “it became
too easy” and “even my sister can do it” [25].

Overall, our findings reveal that the number of subscribers of ISPs is a very strong
predictor for the number of victims per ISP (see Figure 4). This result suggests that
the chances of being victimized are surprisingly uniform across ISPs. The accessibil-
ity of DDoS-as-a-service might have caused a democratization of victims: everywhere
there are now regular users deemed worthy of attack. This is a far cry from the highly
publicized attacks on high profile targets like governments and enterprises. Those are
attacked too, of course, but the bulk is targeted at regular netizens.

That being said, we do see significant variation in terms of victimization rates. The
country-level differences are partially explained by institutional factors and partially by
specific country-level effects. In the absence of direct evidence, we speculated that the
remaining variation might be driven by geographically concentrated network effects.

6 Hosting Providers
In this section we take a closer look at victims located in hosting provider networks.
As for ISPs, the main questions at this stage are: How are victims distributed across
different hosting ASes and Do some hosting providers have disproportionately more
victims than others?. Unlike broadband victims, we do not expect the dynamic nature
of IP allocation to significantly effect or lead to a misrepresentation of the number of
victims. Therefore we can examine the distribution of victims over networks by simply
counting the number of unique victim IPs that we observe per AS.
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As with broadband networks, we expect differences in customer base or network
size to correlate with the number of victims. To test this, we need to estimate the size of
the hosting providers. One approximation is to use the number of hosted second-level
domains (2LDs) per each provider. Recall, however, that we found that only 46.6% of
the hosting victim IPs have been observed to host domains. This implies that the number
of domains will not be a very reliable approximation of the attack surface size. We can
use the number of routed IP addresses by each hosting provider as a second proxy for
size. This metric, however, is less able to account for shared hosting (several 2LDs
sharing the same IP address). As we will see below, using both proxies in combination
gives the best results.

2 3 4 5 6 7 8
No. IPs routed by AS (Log10 scale)

0

1

2

3

4

5

6

U
ni

qu
e 

IP
s 

A
tta

ck
ed

 (
L
og

10
 s

ca
le

)

R2 : 0.25,  p : 0.0000
Slope: 0.49

(a) Routed IPs

3 4 5 6 7 8
No. Domains Hosted in AS (Log10 scale)

0

1

2

3

4

5

6

U
ni

qu
e 

IP
s 

A
tta

ck
ed

 (
L
og

10
 s

ca
le

)

R2 : 0.23,  p : 0.0000
Slope: 0.58

(b) Hosted domains
Fig. 7: Correlation hosting victim counts with size estimates.

Figures 7a and 7b plot the number of unique victim IPs per hosting provider against
the number of routed IP addresses and hosted 2LDs of the provider respectively. Both
figures demonstrate a moderate effect of attack surface size on the number of victims,
but size does not appear to explain a large portion of the variance as indicated by the
relatively lower R2 values. This simply means that only a small part of the variation
among hosting ASes is explainable purely through the attack surface size. We can see
that some hosting ASes are disproportionately attacked more (data points far above
the regression line) or less (data points far below the regression line) in relation to
their size. This signals that attacks on hosting providers are also quite strongly driven
by other explanatory factors. The question to consider then is what additional factors
can explain the variation that we observe after the size effect has been corrected for?
As before correcting for size effects can be achieved through dividing the number of
victims per provider by the size estimate of the provider.

One possible non-size related explanatory factor that we consider is related to the
popularity of the hosted content. The expectation here is that more popular content is
more likely to be attacked. In our analysis we use the list of top 1 million Alexa ranking
domains as a proxy for the popularity of the hosted content [26]. Given the 2LDs that
we have identified per hosting provider, we use the median ranking of the subset of top
1M Alexa ranked domains as an indicator of popularity. Note that in our analysis we
use reversed rankings: the most popular Alexa domain has the rank of 1,000,000.

A second possible factor that we consider is the type of hosting service that is of-
fered. We expect that dedicated hosting is more likely to be attacked in comparison to
shared hosting and other similar cheaper services offered by hosting providers. We use
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the number of IP addresses that have been used by the hosting provider to host all of its
2LDs as an indicator of the type of hosting. This indicator combined with size estimates
(routed IPs and hosted 2LDs) captures the spread/density of domains per available IP
address. A lower density of domains per IP is an indication for more dedicated services
to their customers, while higher densities are indicators of shared hosting.

Our analysis of these non size-related factors demonstrates a weak correlation with
the number of victims per provider after correcting for size effects. For the sake of
brevity we do not include the details and instead move on to consider the joint effect of
all explanatory factors. Table 3: Negative Binomial GLM regression models with

‘Loge’ link function for number of Hosting Victims

Dependent variable:

# Victims per Hosting Provider
(1) (2) (3)

f1: Routed IPs 1.198∗∗∗ 0.507
(log10) (0.040) (0.354)

f2: Hosted Domains 1.237∗∗∗ 1.050∗∗∗
(log10) (0.050) (0.243)

f3: IPs with Domains −0.415
(log10) (0.427)

f4: Median Alexa Rank 0.305∗∗∗
(log10) (0.075)

f1 × f2 −0.338∗∗∗
(Interaction term) (0.088)

f1 × f3 0.266∗∗∗
(Interaction term) (0.044)

f2 × f3 0.198∗∗
(Interaction term) (0.084)

Constant −1.120∗∗∗ −0.988∗∗∗ −3.859∗∗∗
(0.177) (0.215) (1.093)

Observations 2,203 2,203 2,203
Log Likelihood −10,594.160 −10,703.310 −10,192.260
θ 0.421∗∗∗ (0.011) 0.393∗∗∗ (0.010) 0.546∗∗∗ (0.014)
Akaike Inf. Crit. 21,192.330 21,410.620 20,400.520

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In a similar fashion to
what we did for broadband
victims, we construct sev-
eral statistical models of
the number of victims per
hosting provider using neg-
ative binomial GLM re-
gression. A summary of
these models is presented
in Table 3. They clearly
demonstrate that for larger
attack surfaces there are
more victims.

Model3 uses all vari-
ables to explain the vari-
ance in victimization of
hosting providers. Due to
the unavoidable correla-
tions between these vari-
ables we include interac-
tion terms which control
for the covariance between
them. The model demon-
strates that when consid-
ered jointly, the number of
hosted 2LDs and the popu-
larity of content have a significant effect on the number of victims per hosting provider.
As expected, the size-related factor has the largest effect while the popularity of content
as represented by the median Alexa rank is moderately affecting the victim numbers. It
also suggests that there is not enough evidence to support the hypothesis that the den-
sity of domains or type of hosting has a significant effect on victim numbers. Due to the
inclusion of interaction terms, Model3’s results need to be interpreted in a slightly dif-
ferent manner. The more complex and improved model (as indicated by the improved
log likelihood) suggests that while holding all other factors constant, increasing the
‘Hosted Domains’ variable by one unit (equivalent to multiplying the number of hosted
2LDs by 10 due to the log10 scale of the variable) multiplies the number of victims
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by e1.050−0.338+0.198 = 2.48. Increasing the ‘Median Alexa Rank’ variable by one unit
(equivalent to multiplying the median Alexa rank of the content by 10 due to the log-
arithmic scale) multiplies the number of victims by e0.305 = 1.35. Finally, note that in
Model3 the number of routed IPs is not a significantly contributing factor. This does not
negate the size effect as observed in Model1 and simply means that when considered
jointly with the other factors the number of routed IPs does not add more information
to the model that has not been already captured by the other included factors. Based on
these results we can conclude that in addition to size factors which have the strongest ef-
fect on the number of victims per hosting provider the popularity of content also weakly
contributes to this number.

To get a better sense of the actual victims, we have taken a closer look at some of
the hosting victims that are associated with domain names. Many IP addresses are asso-
ciated with multiple domains, obscuring the target and potential motive of the attackers.
However, a subset of around 23,855 IP addresses are associated with just a single do-
main name according to our passive DNS data. We took a random sample of 1% of this
set (238 domains) and checked all of them manually to assess what type of website was
being attacked. Of the 238 domains, 107 no longer showed any content. Most of them
could no longer be resolved, others ran into connection issues or were replaced by park-
ing pages. Given that the victim data was collected over two years, some degree of ‘link
rot’ is to be expected, though this decay of domains is much higher than those found
in other studies (e.g. [27]), suggesting that a lot of the victims had a somewhat fleeting
presence on the web, rather than being well-established businesses or organizations.

Of the 132 sites that offered content, 55 sites (42%) were directly related to gaming.
Of these, 27 were associated with a single game: Minecraft (17), followed by Counter-
strike (6) and Runescape (4). The remaining 77 sites (58%) were highly heterogeneous,
including but not limited to a few large stores, an airline, two football clubs, two schools,
two escort services, one porn site, several hobby forums, a casino, a nature conservancy,
and Twitpic, owned by Twitter since late 2014. In short: motives for DDoS attacks are
highly varied, though gaming-related feuds are the most dominant of motives. In the
Minecraft community specifically, DDoS attacks seem to be part of the culture.

We can summarize our results with respect to hosting providers as follows. Hosting
providers constitute the second largest group of victims in the amplification honeypot
data. Some providers are attacked disproportionately more than others. This can be par-
tially explained by the size of their attack surface. Furthermore, hosting popular content
increases the number of victims. Finally, in agreement to what others have also found
we see a large victimization of gaming related resources within the hosting providers.

7 Attack Duration
In previous sections we have examined the question of who gets attacked more, whether
that is disproportionate and if some factors can explain the variance among victim
counts. We can also approach the question of who gets attacked more from the view
point of time. That is, rather than looking at victim counts we can also approach the
question as who gets attacked longer and possibly why?

To answer these questions, we take all victim IP addresses and measure the intervals
under which they were continuously attacked. These intervals are calculated regardless
of which AMPPOT or protocol was used to attack the victim IP. The resulting interval
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lengths are defined as the attack duration. Note that here, we have merged attacks that
are closer than 600 seconds apart and consider them as one continuous attack on the
victim. Given these durations, the primary question is whether the distribution of these
durations differs per victim type. These distributions are shown in Figure 8.

The median attack duration for broadband ISPs, hosting and the other types of vic-
tims are 272, 285 and 300 seconds, respectively. One surprising observation is the fre-
quency of relatively short attack durations. The majority of attacks are shorter than 286
seconds long. For attacks longer than 300 seconds, we observe similar distributions of
attack durations for all three types of victims. Interestingly, we observe an increased
number of attacks that last around 5, 10, 20, 60, or 120 minutes. The trend suggests
that, in general, the attacks are largely originated from booter services and are most
possibly driven by attackers’ capabilities rather than victim types (see Figure 8).
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Fig. 8: Distribution of attack durations for various victim types.

To further compare the differences in durations for different victim types, we use a
well established statistical technique that is commonly referred to as survival analysis.
The technique is used to answer questions about the proportion of a population that
will survive past a certain point of time on a measurement timeline and at what rate
the individuals ‘survive’ or ‘die’. In our case, the event that we analyze is the ‘end of
an attack’ on a victim IP. Figure 9 demonstrates our survival analysis results. We use
the Kaplan-Meier estimator to approximate the survival function [28], measuring the
probability of an attack exceeding a certain duration for various victim types.

A log-rank comparison of the survival probabilities indicates a significant differ-
ence at a 0.99 confidence level between attack durations on different victim types. The
log-rank chi-square statistic comparison between broadband/hosting, broadband/other
and hosting/other are equal to 2,131.8, 3,493.4, and 739.3 respectively. These results
indicate a significant difference among the attack durations per victim type, however in
terms of magnitude, the differences seem to be quite small (see Figure 9).

We can also compare the survival rates of each victim type using the Cox propor-
tional hazards model. The Cox model does not depend on distributional assumptions of
survival time and allows to estimate the hazard ratio defined as the relative risk based on
a comparison of event rates. The hazard ratios show that relative to hosting providers,
attacks end 14% faster for broadband victims while 3% slower for the other type of vic-
tims. While the results demonstrate that attacks are statistically shorter on broadband
ISP victims the magnitudes of the differences are not large enough to have significant
implications.

To conclude, all victim types experience attacks ranging from short lived attacks
in the order of several seconds to long attacks which last several days. In other words,
there is no significant variance among the duration of attacks on victims of different
types.
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Fig. 9: Survival analysis of attack durations

We have further manually analyzed victim IP addresses of the 100 longest attacks of
which 98 lasted more than 24 hours. They were launched against 87 unique IP addresses
and 46 unique ASes. Interestingly, we do not observe any domains historically hosted
on as many as 41 IP addresses (47 attacks). Of these, 6 IP addresses were directly related
to gaming, including two victims against which the attacks lasted more than 16 days.
Of the remaining 46 unique IP addresses, which were identified to be hosting some
content, 17 were mapped to just a single domain name in passive DNS data. Of these,
we have identified 6 victim IP addresses that hosted websites which provide torrent
files to facilitate P2P file sharing, 4 websites related to gaming, 2 chat websites, one
Internet banking website, and one TorGuard VPN website. By manual analysis of 15
IP addresses for which we observed 2 or 3 domains, we have further identified three
victim IP addresses that mapped mainly to torrent, gaming, and TorGuard websites,
respectively. The remaining 14 victim IP addresses mapped to more than 3 domains; 4
among them appeared to be used for shared web hosting and they mapped to 51, 346,
614, and 931 domains. To conclude, our manual analysis reveals that not only gaming
but also torrent sharing-related IP addresses are among long-duration attacked victims.

8 Related Work
Much research has been devoted to analyzing the technical properties of amplification
DDoS attacks: which protocols can me misused and how; how large the population of
vulnerable reflectors is; how difficult or easy it is to find and misuse these reflectors;
and how they could be mitigated [1, 12, 29, 30]. We know for example that many UDP
based protocols are prone to be misused (NTP, DNS, SNMP and Chargen) and we know
what their amplification factors are [12]. We also know how large the populations of
vulnerable devices running these protocols are [1, 5, 12] and what kind of a threat they
pose. Darknet and honeypot traffic reveals how perpetrators are actively scanning for
such devices in the wild [1, 2, 12, 31]. Some have even attempted attacking their own
infrastructure in order to asses the potential damage of booters and surprisingly find
their damage to be much smaller than the spectacular cases reported in the news [13].
Others have examined the motives behind the provision of booter services through inter-
views [32]. Analysis of trends also reveals how over time specific protocols rise and fall
out of popularity among attackers and how remediation and intervention has affected
the landscape [1, 8].

Earlier work on amplification DDoS attacks have focused less on studying the vic-
tims. The most in-depth understanding comes from the special case of NTP attacks,
which allows probing the amplifier for victim IP addresses. Czyz et al. [1] provided
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the most comprehensive overview. The analysis of the smaller subset of victims from
leaked booter databases [6, 7] also point towards gaming-related victims. We corrob-
orate earlier findings, especially [1, 8], that many of the victims are end hosts and
gaming-related resources, but we also expand on this and show that the distributions
have shifted. Moreover, we provide a wholly novel contribution by developing victim-
ization rates and providing an explanatory analysis of key determinants behind victim-
ization patterns.

Finally, part of what we know about victims is based on industry reports from DDoS
mitigation providers [9–11, 14]. These mostly provide information on the type of indus-
try that is affected most by DDoS attacks and point to the gaming industry and software
industry as main victims. Our results paint a rather different picture, agreeing only with
those reports in that many victims are gaming-related. Industry reports seems to be vul-
nerable to biases related to the fact that data collection often takes place in networks of
the customers of DDoS mitigation providers.

9 Discussion and Implications

This study has presented the first in-depth look at victimization patterns of DDoS am-
plification attacks - and thus of the booter services that drive the bulk of these attacks.
We found that broadband networks harbored most of the victims (62%), followed by
hosting networks (26%). Educational, governmental and enterprise networks make up
just a small fraction of the victim population (12%), contrary to industry reports and
news items about high-profile attacks.

The population of victims is predictably distributed across broadband and hosting
networks. To a large extent, the size of the user population drives the victimization rate –
in broadband around 60% of the variance in victim counts can be explained from just the
number of subscribers of the provider. Further explanatory factors are ICT development
and GDP per capita. We also see significant differences among countries, however, that
are not explained by these institutional factors. Remarkably, within most countries, ISP
victimization rates are clustered together. This implies there are specific country-level
effects at play, perhaps the result of geographically concentrated network effects among
attackers and victims.

In hosting provider networks, the size effect is also visible, though less pronounced.
The popularity of content, as measured by Alexa rankings, had a small effect. When we
looked at victims IP addresses associated with a single domain, we found that 42% of
the sites we could identify were related to gaming, most notably to Minecraft.

Attack duration did not differ significantly across the victim populations. When we
examined the 100 longest attacks, 98 of which lasted more than 24 hours, we found,
again, mostly gaming-related content rather than high-profile targets.

What do these findings mean for the consequences of the so-called commoditiza-
tion of DDoS attacks? Rather than going after high-value targets, DDoS-as-s-service
has invited attackers to go after regular users. With the commoditization of attacks,
victimhood has democratized. And so has criminality, in all likelihood. Assuming that
the users are targeted by someone that actually knows them, rather than by a random
stranger, our findings imply that the attacker population has also broadened. In short,
booters have indeed drawn more attackers into the DDoS ecosystem, as the commodi-
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tization theory suggests, and this has led to a an expansion of victims among regular
users, who now make up the bulk of all victims.

Overall, the fact that most victims are regular users suggests that profit is not a
dominant motive anymore, assuming it ever was. The commoditization provided by
booters has enabled attacks for as little as one U.S. dollar. This type of cybercrime is
priced in the same range as, or even below, many entertainment products. It is now
cost-effective to pursue many more motives than profit, even very frivolous ones – like
harassing your schoolmates during Minecraft games or online chats. Many of the new
attackers probably do not see themselves as cybercriminals. Everyone is doing it, and
they are not making any money from it.

The fact that attack patterns are so proportional to the number of users might seem
unsurprising, but it has far-reaching implications. Rather than a phenomenon of moti-
vated attackers with specific objectives and targets, DDoS has become a cultural phe-
nomenon. The closest parallel to the observed pattern seems to be wide-spread use of
torrents and file lockers to download copyright-infringing materials. This suggests a
new route of action for fighting the DDoS problem: rather than using criminal law to
go after motivated attackers, a better approach might be what criminologists call situa-
tional crime prevention [3]. It shifts the focus from identifying and penalizing attackers
to taking away the opportunities that trigger crime. It can draw on a much broader mix
of measures, often based on civil rather than criminal law. It can range from soft mea-
sures, such as awareness campaigns for youngsters, to harder ones, like the takedown
of booter accounts by providers such as PayPal [8].

What are the implications of our findings for the wider commoditization of cyber-
crime? Should we expect an influx of attackers and an expansion of victims in other
criminal markets as well? Not per se. As Florencio and Herley have argued, cyber-
crime is often harder than it looks and it scales less well than one would assume at first
glance [33, 34]. Indeed, in many markets, we do not see the rapid expansion of crime
that effective commoditization would cause. This can be explained by the fact that many
of these service models do not supply complete criminal value chains. Take fraud using
banking Trojans for example. It is one thing to buy malware-as-a-service and distribute
it via pay-per-install, but that doesn’t mean one can successfully execute online banking
fraud. There are bottlenecks elsewhere, especially in the use of money mules and other
cash-out channels. Mules-as-a-service did not manage to solve this bottleneck yet.

We see the predicted effects of commoditization in DDoS attacks, because here the
booter provides the value chain end-to-end. In other forms of cybercrime this seems
much harder or even impossible, though some might come close, like ransomware-as-
a-service using bitcoin. And indeed, we did recently see an explosion of ransomware
attacks. We can only hope that for many other forms of cybercrime, bottlenecks will
remain resistant to successful commoditization.
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